Трубицин Сергей Николаевич

ИНФОРМАЦИОННО-ЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЕРВИСНОГО ОБСЛУЖИВАНИЯ ТЕЛЕРАДИОВЕЩАТЕЛЬНОЙ СЕТИ

Специальность 05.13.01. Системный анализ, управление и обработка информации (информационно-вычислительное обеспечение)

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Белгородском государственном университете, факультет компьютерных наук и телекоммуникаций, кафедра прикладной информатики

Научный руководитель: доктор технических наук

Петровский Алексей Борисович

Официальные оппоненты: доктор технических наук, профессор

Кукк Калью Иванович

кандидат физико-математических наук,

старший научный сотрудник Шепелёв Геннадий Иванович

Ведущая организация: Учреждение Российской академии наук

Институт проблем информатики РАН

Защита состоится 12 апреля 2010 г. в 11.00 часов на заседании диссертационного совета Д 002.086.02 при Учреждении Российской академии наук Институте системного анализа РАН по адресу: Москва 117312, просп. 60-летия Октября, 9.

С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии наук Институте системного анализа РАН.

Автореферат разослан « » марта 2010 г.

Ученый секретарь диссертационного совета Д.002.086.02 доктор технических наук профессор

А.И. Пропой

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации. Одной из актуальных проблем управления сложными организационно-техническими системами в современных условиях является повышение эффективности их функционирования. Качественное выполнение задач, возложенных на Федеральное государственное унитарное предприятие «Российская телевизионная и радиовещательная сеть» (ФГУП РТРС), которое имеет распределенную по стране сеть, состоящую из почти 80 филиалов, невозможно без организации в рамках предприятия надежной сервисной службы. Основными составляющими, определяющими качество и уровень сервисного обслуживания, служат производственная деятельность сервисных подразделений и центров, которые выполняют техническое обслуживание и ремонт, организация и управление сервисными подразделениями. Производственной деятельности традиционно уделяется больше внимания и с практической, и с научной точек зрения. Организация и управление сервисным обслуживанием рассматриваются обычно в самых общих чертах без использования современных методов бизнес-инжиниринга и средств моделирования.

Сервисная служба ФГУП РТРС представляет собой сложную многофакторную и многофункциональную систему, проектирование и управление которой требуют привлечения методов и средств системного анализа и технологий компьютерного моделирования. Модель сервисной службы телерадиовещательной сети, предназначенная для управления сервисным обслуживанием, должна учитывать структурные подразделения и процессы внутри РТРС, которые обеспечивают существование и функционирование логистической цепи сервисного обслуживания, а также регламентацию и реинжиниринг сервисных процессов и подразделений.

Методы и подходы к системному моделированию и проектированию сложных организационно-технических и информационных систем разработаны в трудах отечественных и зарубежных ученых: Г.Буча, А.М.Вендрова, У.Гренандера, Л.Заде, Э.Йордана, Г.Н.Калянова, Э.Квейда, Р.Л.Кини, Г.Крона, С.И.Маторина, Дж.А.Миллера, А.Б.Петровского, Д.А.Поспелова, Х.Райфы, В.В.Репина, Д.Росса, С.В.Рубцова, Т.Саати, В.Л.Стефанюка, С.С.Стивенса, Дж.Форрестера, С.М.Чудинова и других.

Стремительное развитие компьютерных технологий привело к значительному разрыву между быстро прогрессирующими способами практического анализа, визуального графического моделирования и проектирования организационно-технических систем и медленно развивающимися методами их математического описания. В рамках CASE-технологии повсеместно используются соединение, разъединение и различные преобразования элементов визуальных графоаналитических моделей, представляющих, в частности, бизнес-системы и бизнес-процессы. Формализация описания визуальных графоаналитических моделей, отражающих эти операции, несомненно, способствовала бы повышению эффективности их применения для рационализации и оптимизации бизнес-процессов и управления организационнотехническими системами.

Эти обстоятельства обусловливают актуальность проведения исследований и разработки специальных средств, которые позволяют строить информационнологические модели сложных систем, использовать их при системном проектировании функциональной и объектной структуры системы сервисного обслуживания Российской телевизионной и радиовещательной сети, вырабатывать новые подходы, обеспечивающие эффективное управление сервисной службой.

Цель и задачи исследования. Целью диссертации является разработка системно-объектной технологии моделирования системы сервисного обслуживания телерадиовещательной сети, построение и формализация визуальных графоаналитических моделей подразделений сервисной службы ФГУП РТРС, разработка методик, регламентирующих сервисное обслуживание телерадиовещательной сети и выбор наиболее эффективных способов организации сервиса.

Для достижения поставленной цели в диссертационной работе решены следующие задачи:

1. На основе собранной документальной и фактографической информации о материальных и информационных потоках, связывающих подразделения сервисной службы ФГУП РТРС, проведены анализ и систематизация процедур сервисного обслуживания телерадиовещательной сети.

- 2. Обоснована возможность применения понятий функциональной системологии и аппарата теории паттернов для построения и формализации системнообъектных моделей, а также проектирования и реинжиниринга сложных организационно-технических систем.
- 3. Построены визуальные графоаналитические модели сервисной службы и ее подразделений, проведено проектирование процессов сервисного обслуживания типового участка телерадиовещательной сети с использованием CASE-технологии системно-объектного моделирования и средств бизнес-инжиниринга.
- 4. Разработаны методологические подходы к регламентации сервисных бизнеспроцессов, экспертной оценке и выбору наиболее предпочтительных вариантов организации сервиса на основе системно-объектного моделирования и методов многокритериального принятия решений.

Объект и предмет исследования. Объект исследования – материальные и информационные потоки, связывающие процессы сервисного обслуживания распределенной организационно-технической системы, процедуры их выполнения и субъекты их реализующие. Предмет исследования – средства моделирования и формализации процессов и структур сервисного обслуживания телевизионной и радиовещательной сети.

Методы исследования. Системный подход; системно-объектный анализ; логистический подход; теория паттернов; CASE-технология визуального графоаналитического моделирования; методы многокритериального принятия решений.

Результаты, выносимые на защиту

- 1. Визуальные графоаналитические модели сервисной службы телерадиовещательной сети и ее подразделений, построенные с применением системно-объектного подхода «Узел-Функция-Объект», который позволил систематизировать бизнеспроцессы сервисного обслуживания, классифицировать материальные и информационные связи подразделений сервисной службы, виды сервисных работ, формализовать понятия «модернизация», «усовершенствование» и «ремонт».
- 2. Формализованное описание информационно-логической модели сервисной службы телерадиовещательной сети как взаимосвязанных элементов «Узел-

Функция-Объект», которое использует представление структурных, функциональных и объектных характеристик конфигураций системы с помощью аппарата теории паттернов.

3. Методика регламентации сервисных бизнес-процессов, на основе которой разработаны регламенты конкретных процессов сервисного обслуживания телерадиовещательной сети; методики и критерии для выбора оптимальной схемы доставки средств обслуживания на вещательный узел и рационального способа организации сервиса.

Достоверность и обоснованность научных положений и выводов обеспечивается анализом и систематизацией процедур сервисного обслуживания телерадиовещательной сети; обусловливается корректностью использования принципов системного подхода, математических формулировок и преобразований, отсутствием противоречий с известными теоретическими положениями; подтверждается согласованностью разработанных моделей, алгоритмов, методик и результатов, полученных при их апробации и практической реализации.

Научная новизна. В диссертации теоретически обоснован и разработан комплекс новых средств и методик для моделирования, формализации и регламентации бизнес-процессов сервисного обслуживания телерадиовещательной сети, основанных на применении системно-объектного подхода «Узел-Функция-Объект», аппарата теории паттернов и методов экспертного оценивания. В их числе:

- проведена адаптация алгебры изображений теории паттернов для представления элементов системно-объектных моделей, позволяющая формализовать процедуры их построения;
- с применением математического аппарата теории паттернов разработана формализованная процедура построения визуальной графоаналитической модели распределенной организационно-технической системы в виде триединой конструкции «Узел-Функция-Объект»;
- впервые построена информационно-логическая модель системы сервисного обслуживания телерадиовещательной сети, включающая структурные, функциональные и объектные характеристики системы;

- разработан новый способ регламентации сервисного бизнес-процесса, основанный на его системно-объектном моделировании.

Практическая значимость работы. Построенные информационно-логические модели позволили провести системный анализ материальных и информационных потоков, связывающих подразделения сервисного обслуживания телерадиовещательной сети, выполнить проектирование и регламентацию сервисных бизнеспроцессов, выбрать наиболее рациональные варианты организации сервиса.

Методики регламентации бизнес-процессов сервисного обслуживания телерадиовещательной сети апробированы на конкретных практических примерах работы ФГУП РТРС, в том числе при разработке плана сервисных работ; распределении сервисных работ; обслуживании вещательного узла; управлении закупками материалов и услуг; выборе оптимальных схем доставки средств обслуживания и рационального способа организации сервиса с использованием возможностей логистического аутсорсинга.

Применение предложенных подходов обеспечило повышение эффективности функционирования подразделений сервисной службы ФГУП РТРС за счет более рациональных и менее трудоемких регламентов сервисных процессов, не требующих построения так называемых «матриц ответственности», лучшей согласованности должностных инструкций и положений о подразделениях сервисной службы, обслуживающих телерадиовещательную сеть, лучшей организации сервиса.

Реализация результатов. Результаты диссертации использованы при выполнении отраслевых программ модернизации антенно-фидерных устройств телевизионных и радиовещательных передатчиков, обследования и ремонта антенномачтовых сооружений повышенной эксплуатационной ответственности, совершенствования системы энергоснабжения объектов ФГУП РТРС, а также проекта РФФИ № 08-07-00112. Развитие графоаналитической методологии моделирования открытых систем на основе оригинального системно-объектного подхода «Узел-Функция-Объект». Исследования по моделированию сервисного обслуживания телерадиовещательной сети проводились в соответствии с Договором о сотрудничестве между ФГУП РТРС и Белгородским государственным университетом от 26.05.2005 г.

Апробация работы. Основные положения и результаты диссертационной работы докладывались и обсуждались на 8-й Международной научно-технической конференции «Кибернетика и высокие технологии XXI века», Воронеж, 2007; VIII-й Международной научно-технической конференции «Новые информационные технологии и системы», Пенза, 2008; VI-й Международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности», Санкт-Петербург, 2008; III-й Всероссийской школе-семинаре молодых ученых «Управление большими системами», Липецк, 2008; Международной научно-практической конференции «Современные проблемы моделирования социально-экономических систем», Харьков, 2009; научных семинарах Белгородского государственного университета и Института системного анализа РАН.

Публикации. Основные результаты, полученные в диссертации, опубликованы в 13 печатных работах, в том числе 5 работ в ведущих рецензируемых научных изданиях, рекомендованных ВАК, 5 публикаций в трудах научных конференций. Личный вклад соискателя в совместных работах составляет 2,7 печатных листов из общего объема 5,6 листов и состоит в разработке и формализации информационнологической модели сервисного обслуживания телерадиовещательной сети, создании методик регламентации и экспертной оценки сервисных бизнес-процессов.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, двух приложений, списка литературы (155 наименований). Работа изложена на 192 страницах, содержит 49 рисунков, 21 таблицу.

СОДЕРЖАНИЕ РАБОТЫ

Введение содержит обоснование актуальности и важности темы исследования, формулировки целей и решаемых задач, оценку научной новизны и практической значимости результатов работы. Приведены сведения о реализации результатов и апробации работы. Изложены содержание диссертации и основные результаты.

Первая глава является обзорной. Проведен анализ системы и процессов сервисного обслуживания телерадиовещательной сети. Сформулированы требования к

модели сервисной службы: использование визуальной графоаналитической технологии моделирования; учет логистического характера сервисных бизнес-процессов; регламентация процессов сервисного обслуживания, в частности, проведение плановых работ, обследование и диагностика, ремонт, модернизация.

Выполнен сравнительный анализ понятийного аппарата функциональной системологии и других методологий исследования сложных организационнотехнических систем. Показаны преимущества применения функциональной системологии при решении поставленных задач.

Рассмотрены технологии системно-структурного, объектного и системно-объектного моделирования организационно-технических систем. Обоснован выбор САЅЕ-технологии, основанной на системно-объектном УФО-подходе, в качестве инструментария для информационно-логического моделирования сервисного обслуживания телерадиовещательной сети. Данный подход позволяет представить любую систему в виде трехэлементной конструкции «Узел-Функция-Объект» (УФО-элемента), где «Узел» — это точка пересечения входных и выходных связей (потоков) в структуре моделируемой системы; «Функция» — процесс перевода входа в выход, т.е. процесс, обеспечивающий баланс «втекающих» и «вытекающих» потоков по связям данного узла; «Объект» — субстанция, реализующая данную функцию.

Дано краткое описание методов принятия решений, предлагаемых для экспертной оценки и выбора вариантов организации сервисной службы телерадиовещательной сети.

Во второй главе изложено применение УФО-подхода к моделированию организационно-технических систем и его формализация. Предложен новый инструментарий для формализации визуальных графоаналитических моделей организационнотехнических систем, который основан на аппарате теории паттернов, созданной в конце 60-х годов Гренандером. Проведено согласование математических понятий теории паттернов «образующая», «конфигурация» и «изображение» с понятиями системно-объектного УФО-подхода, который располагает средствами для адекватного описания структурных, функциональных и субстанциальных аспектов сложных систем.

Чтобы сделать возможным использование аппарата теории паттернов, усовершенствовано представление системы как конструкции «Узел-Функция-Объект» в виде кортежа

$$S = \langle (L_t, L_n), (F_{L_t}(L_n)), (P_{tL_t}, P_{nL_n}) \rangle,$$

где L_t — множество выходных и L_n — множество входных связей, характеризующих узел, который занимает система S; $F_{L_t}(L_n)$ — класс функций, балансирующих данный узел, т.е. способов или процедур преобразования входных связей L_n в выходные связи L_t ; $P_{t_{L_t}}$ — множество выходных портов для выходных связей L_t , $P_{n_{L_n}}$ — множество входных портов для входных связей L_t класса объектов, реализующих данный класс функций.

Такое представление системы как УФО-элемента позволяет рассматривать ее как паттерн первого уровня или *образующую* g_i , которая понимается как именованный объект, обладающий некоторыми признаками α , а также входящими и выходящими связями (характеризующимися некоторыми показателями β : для бинарного случая β_1 - вход, β_2 - выход):

$$g_i = \langle (L_2^i, L_1^i), (F_{L_2}^i(L_1^i)), (P_{L_2}^i, P_{n_{L_1}^i}) \rangle.$$

Теория паттернов предполагает наличие источника, генерирующего множество образующих $G=\{g_i\}$. Кроме того, в этой теории рассматриваются преобразования подобия $f: G \rightarrow G, f(g_i)=g_j$, т.е. отображения G в себя, не выводящие образующую из своего класса. Преобразование подобия используется для формализации понятия «сходства» образующих. Конкретный вид f определяется конкретной предметной областью анализа и моделирования и представляет собой полугруппу или группу преобразований. В нашем случае с учетом представления системы как трехэлементной конструкции «Узел-Функция-Объект» следует говорить о трех видах преобразования подобия, которые на примере бинарных УФО-элементов (образующих) могут быть определены так.

Во-первых, преобразование подобия $f_y(g_i)=g_j$, где g_i и g_j такие, что $(L^i_2,L^i_1)=(L^j_2,L^i_1)$. Преобразование подобия f_y относительно узла — это такое преобразование, при котором не меняются узловые (структурные) характеристики УФО-элемента, но из-

меняются его функциональные и объектные характеристики, т.е. справедливы неравенства: $F_{L_2}^i(L^i_1) \neq F_{L_2}^j(L^j_1)$; $(Pt_{L_2}^i, Pn_{L_1}^i) \neq (Pt_{L_2}^j, Pn_{L_1}^j)$.

Для моделирования системы сервисного обслуживания важно, что такое преобразование подобия образующей относительно структуры (узла) моделирует, например, все виды *модернизации* (реинжиниринга) системы, осуществляемой путем изменения функциональной способности ее частей: замена настольного компьютера ноутбуком, прием на «штатную должность» компьютера взамен сотрудника (автоматизация бизнес-процессов) и т.п.

Во-вторых, преобразование подобия $f_{\phi}(g_i)=g_j$, где g_i и g_j такие, что $F_{L_2}^i(L^i)=F_{L_2}^j(L^j)$. Преобразование подобия f_{ϕ} относительно функции — это такое преобразование, при котором не меняются функциональные и узловые характеристики УФО-элемента, но изменяются его объектные характеристики, т.е. справедливо неравенство: $(Pt_{L_2}^i, Pn_{L_1}^i) \neq (Pt_{L_2}^j, Pn_{L_1}^j)$. Из определения функции УФО-элемента следует, что $f_{\phi} \subset f_{\psi}$.

Для моделирования системы сервисного обслуживания важно, что такое преобразование подобия образующей относительно функции моделирует, например, все виды постепенного *усовершенствования* системы, осуществляемого путем замены ее частей объектами нового типа или модели: обновление компьютера, прием на штатную должность более квалифицированного сотрудника взамен низко квалифицированного и т.п.

В-третьих, преобразование подобия $f_o(g_i)=g_j$, где g_i и g_j такие, что $(Pt_{L_2}^i, Pn_{L_1}^i)=$ $=(Pt_{L_2}^j, Pn_{L_1}^j)$. Преобразование подобия f_o относительно объекта — это такое преобразование, при котором не меняются объектные (субстанциальные), а также функциональные и узловые характеристики УФО-элемента, но меняется экземпляр объекта, который реализует функциональность, балансирующую данный узел. Из определения УФО-элемента следует, что $f_o \subset f_\phi \subset f_v$.

Для моделирования системы сервисного обслуживания важно, что такое преобразование подобия образующей относительно субстанции (класса объектов) моде-

лирует, например, все виды *ремонта* системы, т.е. восстановления функционирования системы путем восстановления ее отдельных частей: ремонт компьютера с использованием запасных частей, прием на штатную должность нового сотрудника такой же квалификации взамен выбывшего и т.п.

Сказанное позволяет средствами УФО-подхода и аппарата теории паттернов формализовать важные для сервисного обслуживания понятия: «модернизация», «усовершенствование», «ремонт». Модернизация есть преобразование подобия относительно узла:

$$f_{y}(<(L^{i}_{2},L^{i}_{1}),(F_{L_{2}}^{i}(L^{i}_{1})),(P_{t_{L_{2}}}^{i},P_{n_{L_{1}}^{i}})>)=<(L^{i}_{2},L^{i}_{1}),(F_{L_{2}}^{j}(L^{j}_{1})),(P_{t_{L_{2}}}^{j},P_{n_{L_{1}}}^{j})>.$$

Усовершенствование есть преобразование подобия относительно функции:

$$f_{\phi}(\langle (L_{2}^{i}, L_{1}^{i}), (F_{L_{2}}^{i}(L_{1}^{i})), (P_{t_{L_{2}}^{i}}, P_{n_{L_{1}}^{i}}) \rangle) = \langle (L_{2}^{i}, L_{1}^{i}), (F_{L_{2}}^{i}(L_{1}^{i})), (P_{t_{L_{2}}^{i}}, P_{n_{L_{1}}^{i}}) \rangle.$$

Ремонт есть преобразование подобия относительно объекта:

$$f_{0}(<\!(L_{2}^{i},L_{1}^{i}),(F_{L_{2}}^{i}(L_{1}^{i})),(P_{L_{2}}^{i},P_{n_{L_{1}}^{i}})\!>)\!=\!<\!(L_{2}^{i},L_{1}^{i}),(F_{L_{2}}^{i}(L_{1}^{i})),(P_{L_{2}}^{i},P_{n_{L_{1}}^{i}})\!>.$$

Последние три выражения в совокупности составляют, по сути дела, доказательство утверждения: $f_o \subset f_\phi \subset f_y$, которое может быть интерпретировано, например, следующим образом. Преобразование подобия f_o относительно объекта (самое слабое) является преобразованием только с формальной точки зрения. Содержательно никакого преобразования фактически не происходит; происходит просто восстановление системы. Преобразование подобия f_y относительно узла (самое сильное) устанавливает границу, за которой преобразование данной системы уже не будет сохранять ее подобия, а будет возникать уже другая система.

Формализация системно-объектных моделей, представляющих организационно-технические системы в виде взаимосвязанных УФО-элементов, основана на том, что в теории паттернов это соответствует составлению из образующих паттернов второго уровня — конфигураций. Исходя из правил и ограничений на допустимые комбинации образующих, выделяется множество регулярных конфигураций R. Для построения регулярных конфигураций из образующих (или других конфигураций) используется бинарный оператор, который обеспечивает попарное присоединение

связей образующих в соответствии с их показателями и является основой алгебраического аппарата теории паттернов, заданного на пространстве конфигураций.

В теории паттернов любая конфигурация z определяется cmpyкmypoй, которая в терминах УФО-элементов характеризуется соединением узлов, а также cocmasom, который в нашем случае характеризуется функциями и объектами УФО-элементов. Тогда, если для двух образующих (конфигураций) z_1 и z_2 существуют множества $B(z_1)$ и $B(z_2)$, элементы которых являются внешними связями соответствующих образующих (конфигураций), то из связей, составляющих названные множества, можно образовать список σ_{12} попарных соединений этих связей. Объединенную конфигурацию (комбинацию образующих) обозначим через $z_1\sigma_{12}z_2$. Тогда в соответствии с принятой в теории паттернов манерой обозначений имеем:

$$\operatorname{coctab}(z_1\sigma_{12}z_2) = \operatorname{coctab}(z_1) \cup \operatorname{coctab}(z_2),$$
$$\operatorname{структурa}(z_1\sigma_{12}z_2) = \operatorname{структурa}(z_1) \cup \operatorname{структурa}(z_2) \cup \sigma_{12}.$$

В случае системно-объектного моделирования можно образовать список попарных соединений и получить объединенную конфигурацию, используя ограничения на допустимые комбинации УФО-элементов и способ построения конфигураций, которые задаются с помощью правил системной декомпозиции. Первое и самое очевидное ограничение задается правилом присоединения (ПП): элементы должны присоединяться друг к другу в соответствии с качественными характеристиками присущих им связей. Правило присоединения, однако, не задает всех характеристик конкретной конфигурации, а определяет только класс конфигураций, сходных структурно. Для введения возможности различать эти конфигурации между собой, должны быть заданы ограничения, позволяющие на данной структуре регулярной конфигурации определить конкретные характеристики ее функционирования и состава. Для этого используется правило баланса (ПБ): при присоединении элементов друг к другу должен обеспечиваться баланс «притока» и «оттока» по входящим и выходящим функциональным связям. Используется также правило реализации (ПР): при присоединении элементов друг к другу должно быть обеспечено соответствие интерфейсов и количественных объектных характеристик функциональным. Данные правила представляют собой условия выполнения так называемого оператора приВ терминах теории паттернов указанные правила (для бинарного случая) формально можно записать следующим образом. Правило присоединения (ПП): два УФО-элемента g_i , узел которого ($L^i{}_2,L^i{}_1$), и g_j , узел которого ($L^j{}_2,L^j{}_1$), могут быть присоединены друг к другу, если выполняется хотя бы одно из равенств: $L^j{}_2=L^i{}_1$; $L^i{}_2=L^j{}_1$. Правило баланса (ПБ): в узел (L_2,L_1) регулярной конфигурации можно поставить только такой экземпляр УФО-элемента g_i , функция $F^i{}_{L_2}$ ($L^i{}_1$) которого принадлежит классу функций $F_{L_2}(L_1)$, т.е. справедливо выражение: $F^i{}_{L_2}(L^i{}_1) \in F_{L_2}(L_1)$. Правило реализации (ПР): в узле (L_2,L_1) регулярной согласно правилам ПП и ПБ конфигурации может находиться только такой экземпляр УФО-элемента g_i , у которого объект ($Pt^i{}_{L_2}$, $Pn^i{}_{L_1}$) принадлежит классу объектов (Pt_{L_2} , Pn_{L_1}), т.е. справедливо выражение: ($Pt^i{}_{L_2}$, $Pn^i{}_{L_1}$) принадлежит классу объектов (Pt_{L_2} , $Pn^i{}_{L_1}$), т.е. справедливо выражение:

Понятие преобразования подобия f, введенное на множестве образующих G, распространено на множество R регулярных конфигураций. Преобразование подобия на множестве R можно задать, используя принятую в теории паттернов манеру обозначений, следующим образом:

$$\operatorname{coctab}(fz) = \{fg_1, fg_2, ..., fg_j, ..., fg_h\},$$

 $\operatorname{ctpyktypa}(fz) = \operatorname{ctpyktypa}(z).$

Также, как и для УФО-элементов, целесообразно говорить о трех видах преобразования подобия регулярных конфигураций: f_y — когда обеспечивается изоморфизм конфигураций z и fz относительно узлов (структуры), но конфигурации z и fz различаются классами функций в узлах и реализующими их классами объектов; f_{ϕ} — когда обеспечивается изоморфизм конфигураций z и fz относительно узлов (структуры) и классов функций в узлах, но конфигурации z и fz различаются классами реализующих их объектов; f_o — когда обеспечивается изоморфизм конфигураций z и fz относительно узлов (структуры), классов функций узлов и классов объектов, но конфигурации z и fz различаются экземплярами объектов, реализующих функции в

узлах (т.е. субстанцией). При этом данные преобразования могут быть содержательно проинтерпретированы аналогично предыдущим преобразованиям.

Преобразование подобия на множестве конфигураций является одним из средств формального представления процесса и результата адаптации (оптимизации) организационно-технической системы (как УФО-элемента, т.е. сложной образующей или конфигурации) с учетом ее структуры, функции и субстанции. Это обеспечивается распространением на конфигурации вслед за понятием преобразования подобия понятий функциональной и субстанциальной адаптации УФО-элемента и рассмотрением понятия адаптированной конфигурации. Тем самым любая конфигурация представляет собой образующую или УФО-элемент более высокого уровня цело-частной иерархии.

В теории паттернов на множестве *R* регулярных конфигураций задается *прави- по идентификации Ř*, которое дает интерпретацию регулярной конфигурации в категориях ее функционирования и представляет собой отношение эквивалентности между регулярными конфигурациями, позволяющее рассматривать их как идентичные. Классы эквивалентности, индуцированные на множестве регулярных конфигураций, рассматриваются как *изображения*. Конфигурации в теории считаются формулами, а изображения — функциями. Изображения выражают значения формул, и одной функции могут соответствовать несколько формул. При этом изображение должно содержать информацию относительно несоединенных (внешних) связей конфигурации.

С точки зрения предмета и задач системно-объектного моделирования организационно-технических систем предлагается рассматривать три правила идентификации и три правила определения классов эквивалентности на множестве регулярных конфигураций.

Первое правило \check{R}_y позволяет идентифицировать класс конфигураций, эквивалентных по своим внешним связям, т.е. по узлам соответствующих УФО-элементов. Очевидно, что преобразование подобия f_y имеет смысл только в рамках одного класса \check{R}_y -эквивалентности.

Второе правило \check{R}_{ϕ} позволяет идентифицировать класс конфигураций, эквивалентных по своим функциональным характеристикам, т.е. по функциям соответствующих УФО-элементов. Очевидно, что преобразование подобия f_{ϕ} имеет смысл только в рамках одного класса \check{R}_{ϕ} -эквивалентности.

Третье правило \check{R}_o позволяет идентифицировать класс конфигураций, эквивалентных по своим объектным характеристикам, т.е. по объектам соответствующих УФО-элементов. Очевидно, что преобразование подобия f_o имеет смысл только в рамках одного класса \check{R}_o -эквивалентности.

Из определения узла, функции и объекта следует, что классы эквивалентности конфигураций находятся в соотношении $\check{R}_o \subset \check{R}_\phi \subset \check{R}_y$. Сказанное позволяет рассматривать УФО-элемент без учета его функциональных и объектных характеристик как изображение системы, соответствующей этому УФО-элементу. Это, в свою очередь, позволяет рассматривать контекстную модель любой системы, на которой представлены только ее внешние связи (взаимодействия), как изображение этой системы, которое может быть раскрыто путем ее декомпозиции с помощью различных конфигураций УФО-элементов.

Таким образом, на пространстве УФО-элементов задается и работает алгебраический аппарат, аналогичный алгебре изображений теории паттернов. Используя средства этого аппарата, можно формализовать процедуры УФО-анализа и процесс построения системно-объектных моделей (УФО-моделей) как паттерновых моделей анализируемых или проектируемых систем.

В третьей главе построена визуальная графоаналитическая модель системы сервисного обслуживания РТРС с использованием системно-объектной УФО-технологии.

Моделирование структуры и процессов сервисного обслуживания осуществляется следующим образом: потоки материалов и инструментов, которые служат средствами обслуживания сети, представляются как *связи*; структурные единицы системы сервиса, являющиеся перекрёстками связей (потоков), представляются как *узлы*; сервисные работы, выполняемые структурными подразделениями филиала РТРС, представляются как *функции* соответствующих узлов; непосредственные исполни-

тели этих функций, т.е. отделы и бригады мастеров (подразделения и сотрудники), представляются как *объекты*. Таким образом, элементы логистической цепочки сервиса представляются как целостные конструкции «Узел-Функция-Объект».

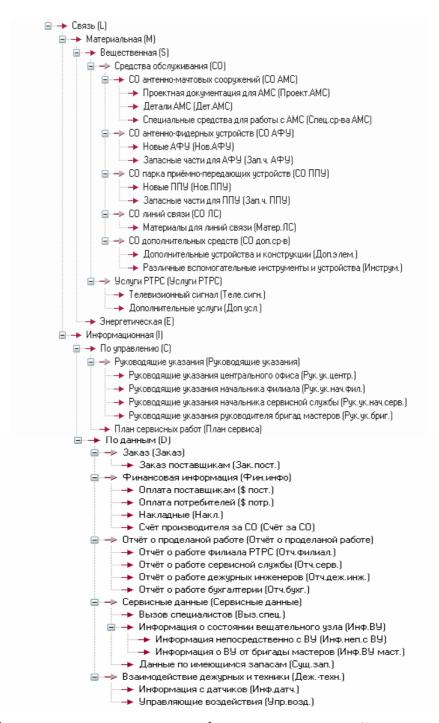


Рис. 1. Классификация материальных и информационных связей сервисной службы РТРС.

В соответствии с УФО-технологией для создания модели системы в терминах «узел», «функция», «объект» построена классификация связей подразделений сервисной службы РТРС, изображенная на рисунке 1. В этой классификации все связи

(L) подразделяются на связи материальные (M) и информационные (I). Материальные связи разделены на связи вещественные (S) и энергетические (E). В системе сервисного обслуживания РТРС средства обслуживания сооружений и устройств, а также услуги, такие как телевизионный сигнал, рассматриваются как разновидности вещественных связей. Информационные связи разделены на связи управляющие (C) и связи по данным (D). К управляющим связям относятся руководящие указания администрации различного уровня и документы, по которым проводятся сервисные работы. Связи по данным делятся на следующие виды: заказ, финансовая информация, отчёты о проделанной работе, сервисные данные, в том числе информация о состоянии вещательного узла.

Контекстная модель РТРС с точки зрения реализации сервисного обслуживания включает в себя следующие элементы: «Центральное управление PTPC», в функцию которого входит управление и координация деятельности всех филиалов; «Филиал РТРС», представляющий собой типовое подразделение ФГУП РТРС; «Консолидированные склады», необходимые сервисной службе как временные пункты хранения при транспортировке средств обслуживания от производителей в филиалы. При рассмотрении сервисного обслуживания филиала РТРС целесообразно выделить в нём три структурных элемента: «Подразделение сервисного обслуживания» (ПСО), «Управление филиалом» и «Вещательный узел» (ВУ). Декомпозиция филиала РТРС средствами УФО-технологии позволяет формализовать функциональные требования к подразделениям сервисного обслуживания. Фрагмент модели «Филиал РТРС» представлен на рисунке 2. Аналогичным образом спроектированы структура и функции подразделения сервисного обслуживания филиала РТРС, в составе которого предусмотрены информационно-диспетчерская служба (ИДС), служба технического обслуживания, ремонта и модернизации (СТОР) и служба снабжения (СС). Фрагмент модели «Подразделение сервисного обслуживания филиала РТРС» представлен на рисунке 3.

Системно-объектное моделирование подразделения сервисного обслуживания позволило создать классификацию видов сервисных работ, выполняемых филиалом РТРС, которая учитывает периодичность работ и сложность ремонта.

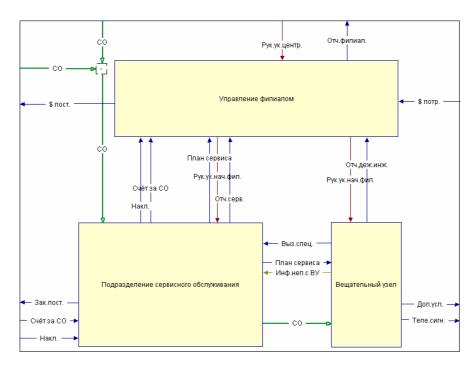


Рис. 2. Фрагмент модели «Филиал РТРС».

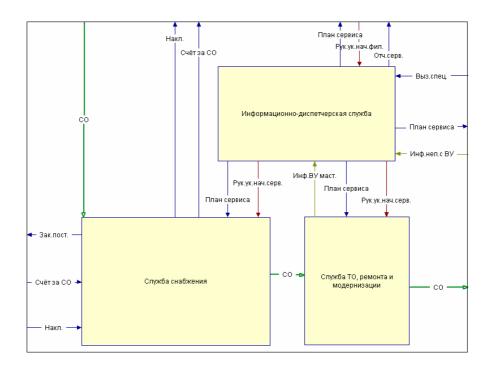


Рис. 3. Фрагмент модели «Подразделение сервисного обслуживания филиала РТРС».

Разработанный в главе 2 математический аппарат использован для формализации процедуры построения информационно-логической модели сервисной службы телерадиовещательной сети как сложной организационно-технической системы. Такая формализованная процедура включает следующие шаги.

1. Контекстное представление моделируемой или проектируемой системы, которое описывает требования к ней в виде входящих и выходящих связей (характеристик узла соответствующего УФО-элемента), с точки зрения теории паттернов является представлением этой системы в виде изображения. Для данного изображения моделируемой системы должен выполняться оператор присоединения \check{U} этой системы как УФО-элемента к контекстным связям (в общем случае с учетом и узловых, и функциональных, и объектных характеристик моделируемой системы, задаваемых контекстными связями, т.е. с учетом всех правил ПП, ПБ и ПР).

Например, подразделение сервисного обслуживания (ПСО) филиала РТРС может быть задано при контекстном моделировании как изображение, которое представляется следующим множеством входящих и выходящих связей:

В(ПСО) = {Счёт за СО, Накл., СО, Рук.ук.нач.фил., Выз.спец., Инф.неп.с ВУ; Зак.пост., Накл., Счёт за СО, План сервиса, Отч.серв., План сервиса, СО}. Здесь СО – средства обслуживания, а обозначения связей приведены на рис.1.

2. Выбор определенного изображения системы фиксирует класс \check{R}_y эквивалентности конфигураций, соответствующих данному изображению. В рамках выбранного класса \check{R}_y конфигураций с внешними связями, заданными изображением, можно провести преобразование подобия f_y относительно данного изображения как узла, которое приводит к сужению данного класса и его конкретизации. Использование оператора присоединения \check{U} (с учетом правила ПП) обеспечивает декомпозицию системы в виде изображения и представление ее в виде комбинации конкретных узлов (УФО-элементов, определенных на уровне узлов), т.е. в виде $\check{R}_y{}^i$ конфигурации, являющейся подклассом в классе $\check{R}_y{}$ -эквивалентности.

На данном шаге моделирования подразделение сервисного обслуживания филиала PTPC может быть задано в виде конфигурации, состав и структура которой в терминах теории паттернов определяются следующим образом:

$$\operatorname{coctab}(\Pi CO) = \operatorname{coctab}(U \not\square C) \cup \operatorname{coctab}(CC) \cup \operatorname{coctab}(CTOP),$$

$$\operatorname{структурa}(\Pi CO) = \operatorname{структуpa}(U \not\square C) \cup \operatorname{структуpa}(CC) \cup \operatorname{структуpa}(CTOP) \cup$$

$$\cup \sigma(U \not\square C, CC) \cup \sigma(U \not\square C, CTOP) \cup \sigma(CC, CTOP),$$

При верном определении состава и структуры подразделения сервисного обслуживания (с учетом правила ПП) выполняется следующее равенство:

$$B(\Pi CO)_{\rm I} = (B(U \square C) \cup B(CC)) \cup B(CTOP)) \setminus$$

($\sigma(U \square C, CC) \cup \sigma(U \square C, CTOP) \cup \sigma(CC, CTOP)$).

3. В рамках полученного подкласса \check{R}_y^i конфигураций можно провести преобразование подобия f_y относительно внутренних узлов этой конфигурации. Использование оператора присоединения \check{U} (с учетом правила ПБ) при преобразовании подобия f_y обеспечивает уточнение полученной на предыдущем шаге декомпозиции системы и представление ее в виде комбинации узлов с определенными функциями, т.е. в виде \check{R}_ϕ^{ij} конфигурации, являющейся подклассом в классе \check{R}_y^i . Согласно алгоритму УФО-анализа данная конфигурация будет являться комбинацией образующих, рассматриваемых как УФО-элементы, у которых определены и узловые, и функциональные характеристики.

Получаемая на данном шаге моделирования конфигурация должна удовлетворять равенству: $F_{\Pi CO}|_{\sigma_{U\!J\!C,CC,CTOP}} = F_{U\!J\!C}{}^{\circ}F_{CC}{}^{\circ}F_{CTOP}$. Данное равенство выполнения при условии:

$$F(\Pi CO) = (F(\mathcal{U} \square C) \cup F(CC) \cup F(CTOP)) \setminus (Dom(\mathcal{U} \square C_n) \cap Im(\mathcal{U} \square C_t) \cap Dom(CC_n) \cap Im(CC_t) \cap Dom(CTOP_n) \cap Im(CTOP_t)).$$

Здесь $Dom(U\mathcal{I}C_n)$, $Dom(CC_n)$, $Dom(CTOP_n)$ — области определения функций соответствующих УФО-элементов на их входах; $Im(U\mathcal{I}C_t)$, $Im(CC_t)$, $Im(CTOP_t)$ — области значений функций соответствующих УФО-элементов на их выходах; $F(U\mathcal{I}C)$, F(CC), F(CTOP) — множества функциональных характеристик соответствующих УФО-элементов таких, что $F(U\mathcal{I}C)$ = $Dom(U\mathcal{I}C_n)$ $\cup Im(U\mathcal{I}C_t)$; F(CC)= $Dom(CC_n)$ $\cup Im(CC_t)$; F(CTOP)= $Dom(CTOP_n)$ $\cup Im(CTOP_t)$.

4. Полученный на предыдущем шаге подкласс $\check{R}_{\phi}^{\ ij}$ конфигураций в классе \check{R}_{ϕ} эквивалентности можно еще больше конкретизировать путем проведения преобразования подобия f_{ϕ} относительно функций внутренних узлов конфигурации с помо-

щью оператора присоединения \check{U} (с учетом правила ПР). Согласно алгоритму УФО-анализа функциональным узлам (УФО-элементам определенным на уровне узлов и функций) $\check{R}_{\phi}^{\ ij}$ конфигурации будут приписываться типы функциональных объектов, соответствующие функциональным узлам. Результирующая конфигурация станет комбинацией полноценных образующих (УФО-элементов с определенными узлами, функциями и объектами) и будет подклассом $\check{R}_{o}^{\ ijk}$ конфигураций в классе \check{R}_{o} -эквивалентности.

Получаемая на данном шаге конфигурация должна удовлетворять равенству:

$$O(\Pi CO) = (O(\mathcal{U} \mathcal{D}C) \cup O(CC) \cup O(CTOP)) \setminus (Pn(\mathcal{U} \mathcal{D}C_n) \cap Pt(\mathcal{U} \mathcal{D}C_t) \cap Pn(CC_n) \cap Pt(CC_t) \cap Pn(CTOP_n) \cap Pt(CTOP_t)).$$

Здесь $Pn(U \not \square C_n)$, $Pn(CC_n)$, $Pn(CTOP_n)$ — множества входных портов соответствующих УФО-элементов; $Pt(U \not \square C_t)$, $Pt(CC_t)$, $Pt(CTOP_t)$ — множества выходных портов соответствующих УФО-элементов; $O(U \not \square C)$, O(CC), O(CTOP) — множества объектных (субстанциальных) характеристик соответствующих УФО-элементов таких, что $O(U \not \square C) = Pn(U \not \square C_n) \cup Pt(U \not \square C_t)$; $O(CC) = Pn(CC_n) \cup Pt(CC_t)$; $O(CTOP) = Pn(CTOP_n) \cup Pt(CTOP_t)$.

5. При расстановке экземпляров реальных объектов в соответствии с УФОэлементами, представленными в полученной на четвертом шаге модели, происходит преобразование последнего подкласса \check{R}_o^{ijk} конфигураций в классе \check{R}_o эквивалентности в образующую-экземпляр \check{R}_o^{ijkq} этого подкласса путем проведения преобразования подобия f_o . Однако, это относится уже не к процессу моделирования или проектирования, а к процессу реализации системы.

Таким образом, процесс системно-объектного моделирования системы описывается с помощью оператора присоединения \check{U} (с учетом правил ПП, ПБ и ПР), а также преобразований подобия f_y , f_ϕ и f_o как построение конфигураций и образующей, входящих во вложенные классы эквивалентности \check{R}_y , \check{R}_ϕ и \check{R}_o . Полученная паттерновая модель системы может быть усовершенствована за счет использования преобразований подобия (адаптации образующих и конфигурации). Предложенная формализованная процедура носит итерационный характер и повторяется на каждом уровне иерархии модели, т.е. на уровне элементов $U\mathcal{I}C$, CC и CTOP.

Проведенное моделирование и проектирование сервисной службы ФГУП РТРС позволило обосновать актуальность ее совершенствования путем создания специализированного транспортно-логистического центра для сервисного обслуживания телерадиовещательной сети, а также целесообразность применения логистического подхода к организации технического обслуживания.

Четвертая глава посвящена разработке методик, позволяющих регламентировать и оценить сервисное обслуживание телерадиовещательной сети. Предложена типовая методика регламентации сервисных бизнес-процессов, использующая системно-объектной УФО-подход для анализа необходимой информации и существующие шаблоны документов для описания бизнес-процессов. Методика позволяет отразить в регламенте не только процессы (функции), составляющие регламентируемый бизнес-процесс, но и объекты, реализующие эти процессы (функции).

В качестве примеров с помощью типовой методики описаны процедуры разработки плана работ по обслуживанию вещательного узла и распределения сервисных работ, построены регламенты процессов обслуживания вещательного узла, закупки средств обслуживания и их доставки в филиал РТРС. При создании шаблонов документов конкретизированы области применения регламентов; выделены клиенты, входы и выходы процессов; указано распределение видов ответственности исполнителей сервисных работ. Предложенный способ регламентации бизнес-процессов не требует построения так называемой «матрицы ответственности» и обеспечивает более четкий баланс между взаимосвязями, функциями и объектными характеристиками сотрудников и подразделений ФГУП РТРС. Методика может применятся в любых крупных организациях, нуждающихся в регламентации бизнес-процессов.

Для определения оптимальной схемы доставки средств обслуживания на склады разработана методика организации логистического процесса, которая использует технологию системно-объектного моделирования, методы теории логистики и принятия решений. Их интеграция позволяет создать общую логистическую цепочку для всей организации в целом, после чего конкретизировать её для конкретного подразделения или филиала РТРС. Тем самым существенно сокращается объём предварительной работы. Как пример приведена методика организации снабжения

подразделения сервисного обслуживания ФГУП РТРС, с помощью которой находится наилучшая схема перевозки грузов от конкретных производителей на склады конкретного филиала в зависимости от срочности поставки и доступных финансовых средств. Выбор оптимальной схемы доставки средств обслуживания является составной частью регламента процесса доставки.

Для выбора наиболее рационального способа организации сервиса предложены критерии и разработана методика, основанная на обработке групповых экспертных оценок. Для повышения надежности выбора рекомендуется решить задачу, например, двумя методами многокритериального принятия решений, сравнить полученные результаты и выбрать наиболее предпочтительный вариант. Методика апробирована на примере выбора наиболее рационального способа организации системы сервиса с учетом возможностей логистического аутсорсинга с помощью метода группового анализа иерархий и метода вербального анализа решений АРАМИС.

Заключение содержит основные результаты и выводы по работе.

В приложении представлены примеры регламентов бизнес-процессов сервисного обслуживания телерадиовещательной сети, экспертные оценки разных способов организации сервиса.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

- 1. Проведены анализ и систематизация бизнес-процессов сервисного обслуживания телерадиовещательной сети. Построены классификация материальных и информационных связей сервисной службы РТРС, классификация видов сервисных работ, выполняемых подразделением сервисного обслуживания филиала РТРС.
- 2. Проведен сравнительный анализ понятий функциональной системологии, обладающей средствами для описания динамических процессов, причинно-следственных связей и концептуального моделирования, который позволил обосновать использование функциональной системологии в качестве методологии исследования сложных организационно-технических систем.

- 3. Предложено формальное представление функциональной и объектной структуры организационно-технической системы в виде триединой конструкции «Узел-Функция-Объект». Показана возможность применения УФО-подхода для описания понятий «модернизация», «усовершенствование» и «ремонт», важных для организации сервисного обслуживания.
- 4. Проведена формализация концептуального аппарата УФО-подхода на основе идей теории паттернов. Развито формальное представление правил манипулирования элементами системно-объектных моделей (правил системной декомпозиции) в виде правил построения регулярных конфигураций теории паттернов. На множестве конфигураций элементов системно-объектных моделей задана алгебра, аналогичная алгебре изображений теории паттернов.
- 5. С использованием системно-объектной САЅЕ-технологии построена визуальная графоаналитическая модель сервисной службы ФГУП РТРС, с помощью которой выполнено проектирование структуры и функций подразделения сервисного обслуживания филиала РТРС и его отдельных служб: информационно-диспетчерской службы, службы технического обслуживания, ремонта и модернизации, службы снабжения подразделения. Предложены пути совершенствования сервисной службы путем создания специализированного транспортно-логистического центра.
- 6. Разработан системно-объектный подход к регламентации сервисных бизнеспроцессов, на основе которого определена ответственность сотрудников и подразделений РТРС, предложены регламенты конкретных процессов сервисного обслуживания телерадиовещательной сети: разработки плана работ по обслуживанию вещательного узла, распределения сервисных работ, обслуживания вещательного узла, закупки и доставки средств обслуживания.
- 7. Предложены методики и критерии экспертной оценки и выбора предпочтительных вариантов сервисного обслуживания телерадиовещательной сети, использующие системно-объектное моделирование и методы многокритериального принятия решений, которые опробованы на примерах выбора оптимальной схемы доставки средств обслуживания на вещательный узел и рационального способа организации сервиса с учетом возможностей логистического аутсорсинга.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в научных изданиях, входящих в перечень, рекомендованный ВАК РФ

- 1. Трубицин С.Н. Проектирование логистического сервисного обеспечения телерадиовещательной сети на основе системного подхода «Узел-Функция-Объект» / Маторин С.И., Трубицин С.Н. // Вопросы радиоэлектроники. Сер. ЭВТ.- Москва. 2007.- №2. С.150-159.
- 2. Трубицин С.Н. Разработка инфологической модели сервисного обеспечения телерадиовещательной сети / Трубицин С.Н., Маторин С.И. // Вопросы радиоэлектроники. Сер. РЛТ.- Москва. 2007.- №4. С.155-165.
- 3. Трубицин С.Н. Формализация системно-объектных визуальных моделей сервисной службы телерадиосети / Трубицин С.Н., Маторин С.И., Зимовец О.А., Жихарев А.Г. // Научные ведомости БелГУ. Сер. Информатика. Белгород. 2008.- №10(50). Выпуск 8/1. С.38-47.
- 4. Трубицин С.Н. Системно-объектное моделирование сервисной службы телевизионной и радиовещательной сети / Маторин С.И., Трубицин С.Н., Зимовец О.А., Жихарев А.Г. // Информационные технологии и вычислительные системы. Москва. 2009. -№3. С.75-87.
- 5. Трубицин С.Н. Оценивание эффективности сервисного обслуживания телерадиосети на основе системно-объектной модели // Научные ведомости БелГУ. Сер. Информатика. Белгород. 2009.- N1(56). Выпуск 9/1. С.71-81.

Статьи в научных журналах и сборниках трудов

- 6. Трубицин С.Н. О задаче создания логистической системы сервисного обслуживания телерадиовещательной сети // Научные ведомости БелГУ. Серия Информатика и прикладная математика. Белгород. 2006. №2(31). Выпуск 3. С.98-106.
- 7. Трубицин С.Н. Подходы к оценке стоимости промышленных предприятий при организации производства конкурентоспособной продукции / Чудинов С.М., Абрамов П.С., Маторин С.И., Трубицин С.Н. // Научные ведомости БелГУ. Серия Информатика и прикладная математика. Белгород. 2007. №7(38). Выпуск 4. С.144-157.
- 8. Трубицин С.Н. Визуальные графоаналитические модели для представления знаний о сервисном обслуживании телерадиосети / Маторин С.И., Зимовец О.А., Трубицин С.Н. // Искусственный интеллект и принятие решений. Москва. 2008. №3. С.52-63.

Доклады в материалах и сборниках трудов научных конференций

- 9. Трубицин С.Н. Представление знаний с применением системологических моделей «Узел-Функция-Объект» / Зимовец О.А., Игрунова С.В., Маторин С.И., Трубицин С.Н. // Материалы 8-й Международной научно-технической конференции «Кибернетика и высокие технологии XXI века». Т. 2. Воронеж. 2007. С.574-582.
- 10. Трубицин С.Н. Информационная технология проектирования сервисной службы на примере обслуживания телевизионной и радиовещательной сети / Трубицин С.Н., Маторин С.И., Зимовец О.А. // Материалы VIII-й Международной научно-технической конференции «Новые информационные технологии и системы». Пенза: ПГУ. 2008. С.252-257.
- 11. Трубицин С.Н. Компьютерное моделирование сервисного обслуживания телерадиосети с помощью системно-объектного подхода «Узел-Функция-Объект» / Маторин С.И., Трубицин С.Н., Зимовец О.А. // Материалы VI-й Международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности». Санкт-Петербург: Издво Политехнического университета. 2008. С.87-88.
- 12. Трубицин С.Н. Формализация системно-объектного подхода для обеспечения управления сервисным обслуживанием телерадиосети / Зимовец О.А., Маторин С.И., Трубицин С.Н. // Материалы III-й Всероссийской школы-семинара молодых ученых «Управление большими системами». Липецк. 2008. C.247-253.
- 13. Трубицин С.Н. Информационная технология системно-объектного проектирования сервисной службы телевизионной и радиовещательной сети / Жихарев А.Г., Маторин В.С., Маторин С.И., Трубицин С.Н.//Материалы Международной научно-практической конференции «Современные проблемы моделирования социально-экономических систем». Харьков. 2009. С.125-132.